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Abstract
A local modal estimation procedure is proposed for the regression function in a non-parametric
regression model. A distinguishing characteristic of the proposed procedure is that it introduces an
additional tuning parameter that is automatically selected using the observed data in order to
achieve both robustness and efficiency of the resulting estimate. We demonstrate both
theoretically and empirically that the resulting estimator is more efficient than the ordinary local
polynomial regression estimator in the presence of outliers or heavy tail error distribution (such as
t-distribution). Furthermore, we show that the proposed procedure is as asymptotically efficient as
the local polynomial regression estimator when there are no outliers and the error distribution is a
Gaussian distribution. We propose an EM type algorithm for the proposed estimation procedure. A
Monte Carlo simulation study is conducted to examine the finite sample performance of the
proposed method. The simulation results confirm the theoretical findings. The proposed
methodology is further illustrated via an analysis of a real data example.

Keywords
Adaptive regression; Local polynomial regression; M-estimator; Modal regression; Robust
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1 Introduction
Local polynomial regression has been popular in the literature due to its simplicity of
computation and nice asymptotic properties (Fan and Gijbels, 1996). In the presence of
outliers, the local M-estimator has been investigated by many authors. See Härdle and
Gasser (1984); Tsybakov (1986); Härdle and Tsybakov (1988); Hall and Jones (1990); Fan,
Hu, and Truong (1994); Fan and Jiang (2000); Jiang and Mack (2001), among others. As
usual, a nonparametric M-type of regression will be more efficient than least-squares based
nonparametric regression when there are outliers or the error distribution has a heavy tail.
However, these methods lose some efficiency when there are no outliers or the error
distribution is normal. Thus, it is desirable to develop a new local modeling procedure,
which can achieve both robustness and efficiency by adapting to different types of error
distributions.

In this paper, we propose local modal regression procedure. Sampling properties of the
proposed estimation procedure are systematically studied. We show that the proposed
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estimator is more efficient than the ordinary least-squares based local polynomial regression
estimator in the presence of outliers or heavy tail error distribution. Furthermore, the
proposed estimator achieves a full asymptotic efficiency of the ordinary local polynomial
regression estimator when there are no outliers and the error distribution is Gaussian
distribution. We further develop a modal EM algorithm for the local modal regression. Thus,
the proposed modal regression can be implemented easily in practice. We conduct a Monte
Carlo simulation to assess the finite sample performance of the proposed procedure. The
simulation results show that the proposed procedure is robust to outliers, and performs
almost as well as the local likelihood regression estimator constructed by using the true error
function. In other words, the proposed estimator is almost as efficient as an omniscient
estimator.

The rest of this paper is organized as follows. In Section 2, we propose the local modal
regression, develop the modal EM algorithm for the local modal regression estimator, and
study the asymptotic properties of the resulting estimator. In Section 3, Monte Carlo
simulation study is conducted, and a real data example is used to illustrate the proposed
methodology. Technical conditions and proofs are given in the Appendix.

2 Local Modal Regression Estimator
Suppose that (x1, y1), …, (xn, yn) are an independent and identically distributed random
sample from

where E(ε| X = x) = 0, var(ε| X = x) = σ2(x), and m(·) is an unknown nonparametric
smoothing function to be estimated. Local polynomial regression is to locally approximate
m(x) = E(Y | X = x) by a polynomial function. That is, for x in a neighborhood of x0, we
approximate

where βj = m(j) (x0)/j!.

The local parameter θ = (β0, …, βp) is estimated by minimizing the following weighted least
squares function

(2.1)

where Kh(t) = h−1K(t/h), a rescaled kernel function of K(t) with a bandwidth h. The
properties of local polynomial regression have been well studied (see, for example, Fan and
Gijbels, 1996). It is also well known that the least squares estimate is sensitive to outliers. In
this section, we propose local modal regression to achieve both robustness and efficiency.

Our local modal regression estimation procedure is to maximize over θ = (β0, …, βp)
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(2.2)

where  and φ(t) is a kernel density function. The choice of φ is not very
crucial. For ease of computation, we use the standard normal density for φ(t) throughout this
paper. See (2.5) below. It is well known that the choice of K(·) is not very important. In our
examples, we will also use Gaussian kernel for K(·). The choices of the bandwidths h1 and
h2 will be discussed later. Denote the maximizer of ℓ(θ) to be θ̂ = (β̂0,···, β̂p). Then the
estimator of the v-th derivative of m(x), m(v)(x), will be

(2.3)

We will refer to θ̂ as the local modal regression (LMR) estimator. Specially, when p = 1 and
v = 0, we refer to this method as local linear modal regression (LLMR). When p = 0, (2.2)
reduces to

(2.4)

which is a kernel density estimate of (X, Y) at (x0, y0) with y0 = β0. Hence, the resulting
estimate β̂0, by maximizing (2.4), is indeed the mode of the kernel density estimate in the y
direction given X = x0 (Scott, 1992, §8.3.2). This is the reason why we call our method local
modal regression. In this paper, we will mainly consider univariate X. The proposed
estimate is applicable for multivariate X, but is practically less useful due to the “curse of
dimensionality”.

In general, it is known that the sample mode is inherently insensitive to outliers as an
estimator for the population mode. The robustness of the proposed procedure can be further
interpreted from the point of view of M-estimation. If we treat −φh2(·) as a loss function, the
resulting M-estimator is a local modal regression estimator. The bandwidth h2 determines
the degree of robustness of the estimator. Figure 1 provides insights into how the local

modal regression estimator achieves the adaptive robustness. Note that  corresponds to the
variance in the normal density. From Figure 1, it can be seen that the negative normal
density with small h2, such as, h2 = 0.5, looks like an outlier resistant loss function, while
the shape of the negative normal density with large h2, for example, h2 = 4, is similar to the
L2-loss function. In practice, h2 is selected by a data-driven method so that the resulting
local estimate is adaptively robust. The issue of selection of both bandwidths h1 and h2 will
be addressed later on.

2.1 Modal expectation-maximization algorithm
In this section, we extend the modal expectation-maximization (MEM) algorithm, proposed
by Li, Ray, and Lindsay (2007), to maximize (2.2). Similar to an EM algorithm, the MEM

algorithm also consists of two steps: E-step and M-step. Let  be the initial
value and start with k = 0:

E-Step—In this step, we update π(j | θ(k)) by
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M-Step—In this step, we update θ(k+1)

(2.5)

since φ(·) is the density function of a standard normal distribution. Here  with

, Wk is an n × n diagonal matrix with diagonal elements π (j |
θ(k))s, and Y = (y1, …, yn)T.

The MEM algorithm requires one to iterate the E-step and the M-step until the algorithm
converges. The ascending property of the proposed MEM algorithm can be established
along the lines of Li, Ray, and Lindsay (2007). The closed form solution for θ(k+1) is one of
the benefits of using normal density function φh2(·) in (2.2). If h2 → ∞, it can be seen in the
E step that

Thus, the LMR converges to the ordinary local polynomial regression (LPR). That is, the
LPR is a limiting case of the LMR. This can also be roughly seen by the following
approximation

(Note that this approximation only holds when h2 is quite large.) This is another benefit of
using the normal density φh2(·) for the LMR. This property makes LMR estimator achieve
full asymptotic efficiency under the normal error distribution.

From the MEM algorithm, it can be seen that the major difference between the LPR and
LMR lies in the E-step. The contribution of observation (xi, yi) to the LPR depends on the
weight Kh(xi − x0), which in turn depends on how close xi is to x0 only. On the other hand,
the weight in the LMR depends on both how close xi is to x0 and how close yi is to the
regression curve. This weight scheme allows the LMR to downweight the observations
further away from the regression curve to achieve adaptive robustness.

The reweighted least squares algorithm (IRWLS) can be also applied to our proposed local
modal regression. When normal kernel is used for φ(·), the reweighted least squares
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algorithm is actually equivalent to the proposed EM algorithm (but they are different if φ(·)
is not normal). In addition, IRWLS has been proved to have monotone and convergence
property if −φ(x)/x is nonincreasing. But the proposed EM algorithm has been proved to
have monotone property for any kernel density φ(·). Note that −φ(x)/x is not nonincreasing if
φ(x) has normal density. Therefore, the proposed EM algorithm provides a better
explanation why the IRWLS is monotone for normal kernel density.

2.2 Theoretical properties
We first establish the convergence rate of the LMR estimator in the following theorem,
whose proof can be found in the Appendix.

Theorem 2.1—Under the regularity conditions (A1)—(A7) in the Appendix, with
probability approaching to 1, there exists a consistent local maximizer θ̂= (β̂0, β̂1, …, β̂p) of
(2.2) such that

where m̂v(x0) = v!β̂v is the estimate of m(v)(x0) and m(v)(x0) is the vth derivative of m(x) at
x0.

To derive the asymptotic bias and variance of the LMR estimator, we need the following
notation. The moments of K and K2 are denoted respectively by

Let S, S̃, and S* be (p + 1) × (p + 1) matrix with (j, l)-element μj+l−2, μj+l−1, and νj+l−2,
respectively, and cp and c̃p be p × 1 vector with j-th element μp+j and μp+j+1, respectively.
Furthermore, let ev+1 = (0, …, 0, 1, 0, …, 0)T, a p×1 vector with 1 on the (v +1)th position.

Let

(2.6)

where  is the first derivative of φh2 (ε) and  is the second derivative of φh2 (ε).

If ε and X are independent, then F(x, h2) and G(x, h2) are independent of x and we will use
F(h2) and G(h2) to denote them respectively in this situation. Furthermore, denote the
marginal density of X, i.e. the design density, by f(·).

Theorem 2.2—Under the regularity conditions (A1)—(A7) in the Appendix, the
asymptotic variance of m̂v(x0), given in Theorem 2.1, is given by

(2.7)

The asymptotic bias of m̂v(x0), denoted by bv(x0), for p – v odd is given by
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(2.8)

Furthermore, the asymptotic bias for p – v even is

(2.9)

provided that m(p+2)(·) are continuous in a neighborhood of x0 and , where

(2.10)

The proof of Theorem 2.2 is given in the Appendix. Based on (2.7) and the asymptotic
variance of the LPR estimator given in Fan and Gijbels (1996), we can show that the ratio of
the asymptotic variance of the LMR estimator to that of the LPR estimator is given by

(2.11)

The ratio R(x0, h2) depends on x0 and h2 only, and it plays an important role in the
discussion of relative efficiency in Section 2.5. Furthermore, the ideal choice of h2 is

(2.12)

From (2.12), we can see that h2,opt dose not depend on n and only depends on the
conditional error distribution of ε given X.

Based on (2.8), (2.9), and the asymptotic bias of the LPR estimator (Fan and Gijbels, 1996),
we know that the LMR estimator and the LPR estimator have the same asymptotic bias
when p – v is odd. When p – v is even, they are still the same provided that ε and X are
independent as a(x0) defined in (2.10) equals f′(x0)/f (x0), but they are different if ε and X
are not independent. Similar to the LPR, the second term in (2.9) often creates extra bias.
Thus, it is preferable to use odd values of p – v in practice. Thus, it is consistent with the
selection order of p for the LPR (Fan and Gijbels, 1996). From now on, we will concentrate
on the case when p – v is odd.

Theorem 2.3—Under the regularity conditions (A1)—(A7) in the Appendix, the estimate
m̂v(x0), given in Theorem 2.1, has the following asymptotic distribution

The proof of Theorem 2.3 is given in the Appendix.
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2.3 Asymptotic bandwidth and relative efficiency
Note that the mean squared error (MSE) of the LMR estimator, m̂v(x0), is

(2.13)

The asymptotic optimal bandwidth for odd p – v, that minimizes the MSE, is

(2.14)

where hLPR is the asymptotic optimal bandwidth for LPR (Fan and Gijbels, 1996),

(2.15)

with

The asymptotic relative efficiency (ARE) between the LMR estimator with h1,opt and h2,opt
and the LPR estimator with hLPR of m(v)(x0) with order p is

(2.16)

From (2.16), we see that R(x0, h2) completely determines the ARE for fixed p and v. Let us
study the properties of R(x, h2) further.

Theorem 2.4—Let gε|x (t) be the conditional density of ε given X = x. For R(x, h2) defined
in (2.11), given any x, we have the following results.

a.
 and hence ;

b.
If gε|x (t) is a normal density, R(x, h2) > 1 for any finite h2 and .

c. Assuming gε|x (t) has bounded third derivative, if h2 → 0, R(x, h2) → ∞.

The proof of Theorem 2.4 is given in the Appendix. From (a) and (2.16), one can see that
the supremum (over h2) of the relative efficiency between the LMR and LPR is larger than
or equal to 1. Hence LMR works at least as well as the LPR for any error distribution. If
there exists some h2 such that R(x, h2) < 1, then the LMR estimator has smaller asymptotic
MSE than the LPR estimator.

As discussed in section 2.3, when h2 → ∞, the LMR converges to the LPR. The equation

 of (a) confirms this result. It can be seen from (b) that when ε ~ N (0, 1), the
optimal LMR (with h2 → ∞) is the same as LPR. This is the reason why LMR will not lose
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efficiency under normal distribution. From (c) one can see that the optimal h2 should not be
too small, which is quite different from the needed locality affect of h1.

Table 1 lists the asymptotic relative efficiency between the LLMR estimator (LMR with p =
1 and v = 0), and the local linear regression (LLR) estimator for normal error distribution
and some special error distributions that are generally used to evaluate the robustness of a
regression method. The normal mixture is used to mimic the outlier situation. This kind of
mixture distribution is also called the contaminated normal distribution. The t-distributions
with degrees of freedom from 3 to 5 are often used to represent heavy-tail distributions.
From Table 1, one can see that the improvement of LLMR over LLR is substantial when
there are outliers or the error distribution has heavy tails.

3 Simulation Study and Application
In this section, we will conduct a Monte Carlo simulation to assess the performance of the
proposed LLMR and compare it with LLR and some commonly used robust estimators. We
first address how to select the bandwidths h1 and h2 in practice.

3.1 Bandwidth selection in practice
In our simulation setting, ε and X are independent. Thus, we need to estimate F(h2) and
G(h2) defined in (2.6) in order to find the optimal bandwidth h2,opt based on (2.12). To this
end, we first get an initial estimate of m(x), denoted by m̂I(x) and the residual ε̂i = yi −
m̂I(xi), by fitting the data using any simple robust smoothing method, such as LOWESS.
Then we estimate F(h2) and G(h2) by

respectively. Then R(h2) can be estimated by R̂(h2) = Ĝ(h2)F̂(h2)−2/σ̂2, where σ̂ is estimated
based on the pilot estimates, ε̂1, …, ε̂n, of the error term. Using the grid search method, we
can easily find ĥ2opt to minimize R̂(h2). (Note that ĥ2opt would not depend on x.) From
Theorem 2.4(c), we know that the asymptotically optimal h2 is never too small. Based on
our empirical experience, the size of chosen h2 is usually comparable to the standard
deviation of the error distribution. Hence the possible grid points for h2 can be: h2 = 0.5σ̂ ×
1.02j, j = 0, …, k, for some fixed k (such as k = 90).

The asymptotically optimal bandwidth h1 is much easier to estimate after finding ĥ2opt.
Based on the formula (2.14) in Section 2.5, the asymptotically optimal bandwidth for h1 of
LLMR is hLLR multiplied by a factor {R(h2opt)}1/5. After finding ĥ2opt, we can estimate
{R(h2opt)}1/5 by {R̂(ĥ2opt)}1/5. We can then employ an existing bandwidth selector for LLR,
such as the plug-in method (Ruppert, Sheather, and Wand, 1995). If the optimal bandwidth
selected for LLR is ĥLLR, then h1 is estimated by ĥ1opt = {R̂(ĥ2,opt)}1/5ĥLLR.

When ε and X are independent, the relationship (2.14) also holds for the global optimal
bandwidth that is obtained by minimizing weighted Mean Integrated Square Error

, where w ≥ 0 is some weight function, such as 1 or design
density f(x). Hence the above proposed way to find ĥ1opt also works for the global optimal
bandwidth. For the simplicity of computation, we used the global optimal bandwidth for
ĥLLR and thus ĥ1opt for our examples in Section 3.2 and 3.3.
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3.2 Simulation study
For comparison, we include in our simulation study the local likelihood regression (LLH)
estimator (Tibshirani and Hastie, 1987) assuming the error distribution is known.
Specifically, suppose the error distribution is g(t), the LLH estimator finds θ̂ = (β̂0, β̂1) by
maximizing the following local likelihood

(3.1)

The estimate of regression function m(x0) is m̂(x0) = β̂0.

If the error density g(t) is assumed to be known, the LLH estimator (3.1) is the most efficient
estimator. However, in reality, we will seldom know the true error density. The LLH
estimator is just used as a benchmark, omniscient estimator to check how well the LLMR
estimator adapts to different true densities.

We generate the independent and identically distributed (i.i.d.) data {(xi, yi), i = 1, …, n}
from the model Yi = 2 sin(2πXi) + εi, where Xi ~ U (0, 1). We consider the following three
cases:

Case I εi ~ N (0, 1).

Case II εi ~ 0.95N (0, 1) + 0.05N (0, 52). The 5% data from N(0, 52) are most likely
to be outliers.

Case III εi ~ t3.

We compared the following five estimators:

1. Local linear regression (LLR). We used the plug-in bandwidth (Ruppert, Sheather,
and Wand, 1995).

2. Local ℓ1 regression/median regression (LMED).

3. Local M estimator (LM) using Huber’s function ψ(x) = max{−c, min(c, x)}. As in
Fan and Jiang (2000), we take c = 1.35σ̂, where σ̂ is the estimated standard
deviation of the error term by MAD estimator i.e.

where ε̂ = (ε̂1, …, ε̂n) are the pilot estimates of the error term.

4. Local linear modal regression (LLMR) estimator (LMR with p = 1 and v = 0).

5. Local likelihood regression (LLH) using the true error density.

For comparison, in Table 2, we reported the relative efficiency between different estimators
and the benchmark estimator LLH, where RE(LLMR) is the relative efficiency between the
LLMR estimator and the LLH estimator. That is, RE(LLMR) is the ratio of MSE(LLH) to
MSE(LLMR) (based on 50 equally spaced grid points from 0.05 to 0.95 and 500 replicates).
The same notation applies to other methods.

From Table 2, it can be seen that for normal error, LLMR had a relative efficiency very
close to 1 from the small sample size 50 to the large sample size 500. Notice that in Case I,
we need not use a robust procedure and LLR should work the best in this case. Note that in
this case LLR is the same as LLH. However the newly proposed method LLMR worked
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almost as well as LLR/LLH when the error distribution is exactly the normal distribution.
Hence LLMR adapted to normal errors very well. In addition, we can see that LM lost about
8% efficiency for the small size 50 and lost about 5% efficiency for the large sample size
500. LMED lost more than 30% efficiency under normal error.

For contaminated normal error, LLMR still had a relative efficiency close to 1 and worked
better than LM, especially for large sample sizes. Hence LLMR adapted to contaminated
normal error distributions quite well. In this case, LLR lost more than 40% efficiency and
LMED lost about 30% efficiency.

For t3 error, it can be seen from Table 2 that LLMR also worked similarly to LLH and a
little better than LM, especially for large sample sizes. Hence LLMR also adapted to t-
distribution errors quite well. In this case, LLR lost more than 40% efficiency and LMED
lost about 15% efficiency.

3.3 An application
In this section, we illustrate the proposed methodology by analysis of the Education
Expenditure Data (Chatterjee and Price, 1977). This data set consists of 50 observations
from 50 states, one for each state. The two variables to be considered here are X, the number
of residents per thousand residing in urban areas in 1970 and Y, the per capita expenditure
on public education in a state, projected for 1975. For this example, one can easily identify
the outlier. We use this example to show how the obvious outlier will affect the LLR fit and
the LLMR fit.

Figure 2 is the scatter plot of original observations and the fitted regression curves by LLR
and LLMR. From Figure 2, one can see that there is an extreme observation (outlier). This
extreme observation is from Hawaii, which has very high per capita expenditure on public
education with x value close to 500. This observation created the big difference between the
two fitted curves around x = 500. The observations with x around 500 appear to go down in
that area compared to the observations with x around 600. Thus the regression function
should also go down when x moves from 600 to 500. The LLMR fit reflected this fact. (For
this example, the robust estimators LMED and LM provided similar results to LLMR.)
However the LLR fit went up in that area, due to the big impact of the extreme observation
from Hawaii. In fact, this extreme observation received about a 10% weight in the LLR fit at
x = 500, compared to nearly 0% weight in the LLMR fit. Hence, unlike local linear
regression, local linear modal regression adapts to, and is thereby robust to, outliers.

4 Discussion
In this paper, we proposed a local modal regression proceduce. It introduces an additional
tuning parameter that is automatically selected using the observed data in order to achieve
both robustness and efficiency of the resulting nonparametric regression estimator. Modal
regression has been briefly discussed in Scott (1992, §8.3.2) without any detailed asymptotic
results. Scott (1992, §8.3.2) used a constant β0 to estimate the local mode as (2.4). Due to
the advantage of local polynomial regression over the local constant regression, we extended
the local constant structure to local polynomial structure and provided a systematic study of
the asymptotic results of the local modal regression estimator. As a measure of center, the
modal regression uses the “most likely” conditional values rather than the conditional
average. When the conditional density is symmetric, these two criteria match. However, as
Scott (1992, §8.3.2) stated that modal regression, besides the robustness, can explore more
complicated data structure when there are multiple local modes. Hence local modal
regression may be applied to mixture of regression (Goldfeld and Quandt, 1976; Fruhwirth-
Schnatter, 2001; Rossi, Allenby, and McCulloch, 2005; Green and Richardson, 2002) and
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“change point” problem (Lai, 2001; Bai and Perron, 2003; Goldenshluger, Tsbakov, and
Zeevi, 2006). These require further research.

Chu, et al. (1998) also used the Gaussian kernel as the outlier-resistent function in their
proposed local constant M-smoother for image processing. However, they let h2 → 0 and
aimed at edge-preserving smoothing when there is jump in the regression curves. In this
paper, the goal was different; we sought to provide an adaptive robust regression estimate
for the smooth regression function m(x) by adaptively choosing h2. In addition, we proved
that for regression estimate, the optimal h2 does not depend on n and should not be too
small.

In addition, note that the local modal regression does not estimate the mean function in

general. It requires the assumption , which holds if the error density is
symmetric about 0. If the above assumption about the error density does not hold, the
proposed estimate is actually estimating the function

which converges to the mode E(Y | X = x) if h2 → 0 and the bias depends on h2. For the
general error distribution and fixed h2, all the asymptotics provided in this paper still apply
if we replace the mean function m(x) by m̃(x).
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APPENDIX: PROOFS
The following technical conditions are imposed in this section.

Technical Conditions
(A1) m(x) has continuous (p + 1)th derivative at the point x0.

(A2) f(x) has continuous first derivative at the point x0 and f (x0) > 0.

(A3) F(x, h2) and G(x, h2) are continuous with respect to x at the point x0, where F (x,
h2) and G(x, h2) are defined in (2.6).

(A4) K(·) is a symmetric (about 0) probability density with compact support [−1, 1].

(A5) F(x0, h2) < 0 for any h2 > 0.

(A6)  and , and  are
continuous with respect to x at the point x0.

(A7) The bandwidth h1 tends to 0 such that nh1 → ∞ and the bandwidth h2 is a
constant and does not depend on n.

The above conditions are not the weakest possible conditions, but they are imposed to
facilitate the proofs. For example, the compact support restriction on K(·) is not essential and
can be removed if we put restriction on the tail of K(·). The condition (A5) ensures that there
exists a local maximizer of (2.2). In addition, although h1 is assumed to go to zero when n
→ ∞, h2 is assumed to be a fixed constant and its optimal values only depend on the error

density not n. The condition  ensures the proposed estimate is consistent
and it is satisfied if the error density is symmetric about 0. However, we don’t require the

error distribution to be symmetric about 0. If the assumption  doesn’t hold,
the proposed estimate is actually estimating the function
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Denote , θ = (β0, β1, …, βp) θ*

= Hθ, , and Ki = Kh1 (xi − x0), where βj = m(j)(x0)/j!, j = 0, 1,
…, p. The following lemmas are needed for our technical proofs.

Lemma A.1
Assume that the conditions A1–A6 hold. We have

(A.1)

and

(A.2)

Proof. We shall prove (A.1), since (A.2) can be shown by the same arguments. Denote

. In the same lines of arguments as in Lemma 5.1 of (Fan and
Jiang, 2000), we have

and

Based on the result  and the assumption nh1 → ∞, it follows that
Tn = F (x0, h2)f (x0)μj + op(1).

Proof of Theorem 2.1—Denote . It is sufficient to show that for any
given η > 0, there exists a large constant c such that

(A.3)

where ℓ(θ) is defined in (2.2).

By using Taylor expansion, it follows that
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(A.4)

where zi is between εi + R(Xi) and .

By directly calculating the mean and variance, we obtain

Hence

Similarly,

From Lemma A.1, it follows that

Noticing that S is a positive matrix, ||μ|| = c, and F(x0, h2) < 0, we can choose c large enough
such that I2 dominates both I1 and I3 with probability at least 1 − η. Thus (A.3) holds. Hence
with probability approaching 1 (wpa1), there exists a local maximizer θ̂* such that ||θ̂* − θ*||

≤ αnc. where . Based on the definition of θ*, we can get, wpa1,

.

Define

(A.5)

We have the following asymptotic representation.

Lemma A.2
Under conditions (A1)—(A6), it follows that
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(A.6)

Proof
Let

Then

The solution θ̂* satisfies the equation

(A.7)

where ε* is between εi and εi + γ̂i. Note that the second term on the left hand side of (A.7) is

(A.8)

Applying Lemma A.1, we obtain

and

From the Theorem 2.1, we know , hence

(A.9)
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and

Also similar to the proof of Lemma A.1, we have

(A.10)

Based on (A.9), (A.10), and condition (A6),

and

Hence for the third term on the left-hand side of (A.7),

Then, it follows from (A.5) and (A.7) that

which is (A.6).

Proof of Theorem 2.2—Based on (A.5) and the condition (A6), we can easily get E(Wn)
= 0. Similar to the proof in Lemma A.1, we have

So
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(A.11)

Based on the result (A.6), the asymptotic bias bv(x0) and variance of m̂v(x0) are naturally
given by

and

By simple calculation, we can know the (v + 1)th element of S−1cp is zero for p – v even. So
we need higher order expansion of asymptotic bias for p – v even. Following the similar

arguments as Lemma A.1, if , we can easily prove

where J1 and J2 is defined in (A.8) and .

Then, it follows from (A.7) that

where
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For p – v even, since the (v + 1)th element of S−1cp and S−1S̃S−1cp is zero (see Fan and
Gijbels, 1996 for more detail), the asymptotic bias bv(x0) of m ̂v(x0) are naturally given by

Proof of Theorem 2.3—It is sufficient to show that

(A.12)

where D = G(x0, h2)f (x0)S*, because using Slutsky’s theorem, it follows from (A.6), (A.12),
and Theorem 2.2 that

Next we show (A.12). For any unit vector d ∈ ℝp+1, we prove

Let

Then . We check the Lyapunov’s condition. Based on (A.11), we can get
 and

. So we only need to prove nE|ξ1|3

→ 0. Noticing that (d′Xi)2 ≤ ||d||2||Xi||2, φ′(·) is bounded, and K(·) has compact support,

So the asymptotic normality for  holds with covariance matrix G(x0, h2)f (x0)S*.

Proof of Theorem 2.4
a. Note that
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Based on (2.6), when h2 → ∞, we have

Then , when h2 → ∞. So for
any x

(A.13)

From (A.13), we can get  for any x.

b. Suppose gε|x(t) is the density function of N (0, σ2(x)). By some simple calculations,
we can get

(A.14)

(A.15)

Hence

From (a), we can get , for any x.

c. Suppose that h2 → 0, then

So we can easily see that R(x, h2) = G(x, h2)F (x, h2)−2σ−2(x) → ∞ as h2 → 0.
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Figure 1.
Plot of Negative Normal Densities.
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Figure 2.
Plot of fitted regression curves for Education Expenditure Data. The star point is the extreme
observation from Hawaii. The solid curve is the local linear regression (LLR) fit. The dash-
dash curve is the local linear modal regression (LLMR) fit.

Yao et al. Page 21

J Nonparametr Stat. Author manuscript; available in PMC 2013 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yao et al. Page 22

Table 1

Relative efficiency between the LLMR estimator and the LLR estimator

Error Distribution Relative Efficiency

N(0, 1) 1

0 95N(0, 1) + 0.05N(0, 32) 1.1745

0.95N(0, 1) + 0.05N(0, 52) 1.6801

t-distribution with df=5 1.1898

t-distribution with df=3 1.7169
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